منابع مشابه
Almost set-theoretic complete intersections in characteristic zero
We present a class of toric varieties V which, over any algebraically closed field of characteristic zero, are defined by codim V +1 binomial equations .
متن کاملOn toric varieties which are almost set-theoretic complete intersections
We describe a class of affine toric varieties V that are set-theoretically minimally defined by codimV + 1 binomial equations over fields of any characteristic.
متن کاملVeronesean Almost Binomial Almost Complete Intersections
The second Veronese ideal In contains a natural complete intersection Jn generated by the principal 2-minors of a symmetric (n× n)-matrix. We determine subintersections of the primary decomposition of Jn where one intersectand is omitted. If In is omitted, the result is the other end of a complete intersection link as in liaison theory. These subintersections also yield interesting insights int...
متن کاملAlmost Complete Sets
We show that there is a set which is almost complete but not complete under polynomial-time many-one (p-m) reductions for the class E of sets computable in deterministic time 2. Here a set A in a complexity class C is almost complete for C under some reducibility r if the class of the problems in C which do not r-reduce to A has measure 0 in C in the sense of Lutz’s resource-bounded measure the...
متن کاملA New Almost Difference Set Construction
This paper considers the appearance of almost difference sets in non-abelian groups. While numerous construction methods for these structures are known in abelian groups, little is known about ADSs in the case where the group elements do not commute. This paper presents a construction method for combining abelian difference sets into nonabelian almost difference sets, while also showing that at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Blue Jay
سال: 1952
ISSN: 2562-5667,0006-5099
DOI: 10.29173/bluejay1597